Large Signal RF Applications of BST Varactors

Amir Mortazawi1, Ali Tombak1, Jon-Paul Maria2, Tito Ayguavives2, Angus I. Kingon2, Gregory T. Stauf3, Jeffrey F. Roeder3

\textit{North Carolina State University, Raleigh NC}

\textit{Department of Electrical and Computer Engineering}1
\textit{Department of Materials Science and Engineering}2

\textit{ATMI, Inc.}3, Danbury, CT
Outline

- Introduction
 - Applications
 - Device requirements
 - MOCVD deposition method
- Small Signal Measurements
 - Equivalent circuit, loss tangent
 - Tunability
 - Frequency dependent permittivity
- Large Signal Characterization
 - Large signal measurement setup
 - Tunability as a function of RF voltage
- IP3 measurement of a tunable low pass filter
- Nonlinear device modeling issues
Basic Applications

- Varactor for impedance matching network
 - DC/DC power converter
 - Replaces semiconductor varactor
- Voltage Controlled Crystal Oscillator (VCXO)
 - Improves phase noise in tuning circuit
 - Replaces semiconductor varactor diode
- Tunable bandpass filter
 - Replaces switched banks of discrete filters
- Advantages include ease of integration with active devices such as MMICs, low cost and low losses
Device Requirements

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Impedance matching network</th>
<th>VCXO varactor</th>
<th>Tunable bandpass filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q values</td>
<td>$> 200 \ @ \ 100 \ MHz$</td>
<td>$> 1000 \ @ \ 100 \ MHz$</td>
<td>$> 200 \ @ \ 2GHz$</td>
</tr>
<tr>
<td>Capacitance values</td>
<td>$\sim 600 \ pF$</td>
<td>$\sim 1 - 50 \ pF$</td>
<td>$0.5 \ to \ 10 \ pF$</td>
</tr>
<tr>
<td>Tunability</td>
<td>2:1</td>
<td>2:1</td>
<td>2:1</td>
</tr>
<tr>
<td>Voltage tuning range</td>
<td>28 Volt</td>
<td>$\sim 1 - 10 \ Volt$</td>
<td>1 - 10 volt</td>
</tr>
<tr>
<td>Frequency range</td>
<td>30 - 100 MHz</td>
<td>$\sim 100 \ MHz$</td>
<td>$\sim > 5 \ GHz$</td>
</tr>
<tr>
<td>Self resonant frequency</td>
<td>$> 500 \ MHz$</td>
<td>$> 1 \ GHz$</td>
<td>$> 5 \ GHz$</td>
</tr>
<tr>
<td>Permittivity drift over -55 to +125 °C</td>
<td>$\sim < 10 %$</td>
<td>$\sim < 10 %$</td>
<td>$\sim < 10 %$</td>
</tr>
</tbody>
</table>

- High Field
- High Power
- Moderate Frequency
- Low Field
- Low power
- High Frequency
- Low Field
- Low Power
- Very High Frequency
BST High Frequency Applications: Considerations

Project Goals

- **Low loss @ 30 MHz - 2 GHz**
 - \(\tan \delta \leq 0.002 \) @ 100 MHz
 - \(\tan \delta \leq 0.01 \) @ 2 GHz
- **High tunability**
 - \(\Delta C/C \geq 50\% \)
- **Thick films**
 - \(t \geq 300 \text{ nm} \)

Approach

- **MOCVD of BST**
 - composition control
 - dopants
 - microstructure control
 - large area
- **Si substrates**
 - large area
 - standard processing
- **Parallel plate capacitors**
- **Pt electrodes**
Liquid Delivery MOCVD of BST Thin Films

Process Conditions

- Substrate temperature 640-680 °C
- Pressure : 0.7 torr
- Ar, O₂ and N₂O total flow : 0.5 - 2.0 SLM
- CVD precursors :
 - Ba(thd)₂ --polyamine, tetraglyme
 - Sr (thd)₂ --polyamine, tetraglyme
 - Ti(OPr-i)₂ (thd)₂
- Precursor flow (liquid) : 4 - 10 ml./hr.
- Deposition rate 40 - 100Å/min.

- Polyamine Ba, Sr adducts used for this work (low and high frequency)
- Tetrasylyme adducts used in previous work (low frequency - DRAMs)
BST Capacitor Measurements

- Physical structure and equivalent circuit model used for high frequency measurements
- 50 x 50 µm etched capacitors
Thin BST: Tunability and Tanδ @ 10 kHz

Tunability > 50%, dissipation ~0.003

t = 71 nm
54.2% Ti
Ba/Sr = 70/30
T_{dep} = 640°C
Tunability and Tanδ in Thick BST @ 10kHz

Tunability > 70%, dissipation ~0.005

Dielectric Constant

DC Bias (V)

Dissipation Factor

t = 301 nm
52.8% Ti
Ba/Sr = 70/30
T_{dep} = 640°C

Tunability > 70%, dissipation ~0.005

NC State University
Raleigh, NC

ATMI
Tunability at 50 MHz

- The capacitor was measured with HP8510C VNA
- Tunability > 50% @ 50 MHz with tanδ = 0.004

- $t = 71$ nm
- 54.2% Ti
- Ba/Sr = 70/30
- $T_{\text{dep}} = 640^\circ$C
Frequency Dependent Permittivity

- Very little measurable dispersion between 1 GHz and 10 GHz

t = 71 nm
54.2% Ti
Ba/Sr = 70/30
T_{dep} = 640°C
Large Signal Measurement Setup

- BST capacitors have been measured by using the set-up above.
- The data taken from transition analyzer was then optimized based on the equivalent circuit model and permittivity values were obtained.
Measured and Simulated Tunability vs. RF Voltage Amplitude

Measured tunability compression

Simulated tunability compression

- Small signal tunability curve was fitted to a 13\(^{th}\) order polynomial, the nonlinear capacitor associated with this polynomial was simulated in HP-ADS
- Good agreement between measured and simulated tunability is obtained
IP3 Measurement of a Tunable Lowpass Filter

- The low pass filter was designed based on the 5th order Chebychev coefficients for 0.5 dB ripple
- BST capacitors were connected by means of bond wires to the inductors
Measured Insertion & Return Loss

- Increasing voltage improves insertion loss since impedance matching gets better.
- Most of the insertion loss is due to conductor losses
Measured and Simulated IP3 for the Filter

- For frequencies near the cut-off, output intercept point drops
Nonlinear Device Modeling Issues

- Generally assume device nonlinearities dominated by the nonlinear, field-dependent permittivity

- Could there be other contributing factors?

- For example: the dielectric dispersion and corresponding relaxation currents
Nonlinear Device Modeling (contd.)

- Dielectric displacement current corresponding to ε_∞
- Relaxation Current $\alpha \ t^{-n}$
- Leakage current
- Dielectric permittivity, ε
 - $\varepsilon(f) \propto \omega^{n-1}$
- Loss tangent (frequency independent) up to optical frequencies
- Phonon losses

Log time

Log frequency
Implications

- The lower $\tan\delta$, the smaller is the frequency dependency of the device capacitance

- The field dependence of the high frequency permittivity is different to that of the long range polarization. The polarization currents have a weak field dependence

- Where loss tangents are relatively high (e.g. > 0.005), these effects may need to be considered for a non-linear device