A Continuum Model of the Dynamics of Coupled Oscillator Arrays for Phase-Shifterless Beam Scanning

Ronald J. Pogorzelski, Fellow, IEEE, Paolo F. Maccarini, and Robert A. York, Member, IEEE

Abstract—The behavior of arrays of coupled oscillators has been previously studied by computational solution of a set of nonlinear differential equations describing the time dependence of each oscillator in the presence of signals coupled from neighboring oscillators. The equations are sufficiently complicated in that intuitive understanding of the phenomena which arise is exceedingly difficult. We propose a simplified theory of such arrays in which the relative phases of the oscillator signals are represented by a continuous function defined over the array. This function satisfies a linear partial differential equation of diffusion type, which may be solved via the Laplace transform. This theory is used to study the dynamic behavior of a linear array of oscillators, which results when the end oscillators are detuned to achieve the phase distribution required for steering a beam radiated by such an array.

Index Terms—Beam steering, coupled oscillators, injection locked, phased array.

I. INTRODUCTION

It has been suggested that an array of coupled oscillators can be used to control the phase distribution across the aperture of an array antenna in such a manner as to effect steering of the beam without the use of phase shifters [1]. Such an array is schematically illustrated in Fig. 1. The behavior of such arrays of oscillators has been described in detail using a coupled set of nonlinear differential equations [2], [3]. These equations are derived by first describing the behavior of an individual oscillator with injection locking in the manner of Adler [4] and then allowing the injection signals to be provided by the neighboring oscillators in the array. Pogorzelski [5] noted that the resulting formalism contains a matrix operator resembling a discretized version of the familiar Laplacian operator and conjectured that, as a consequence, solutions of Laplace’s equation may play a significant role in the behavior of the array. In exploring the consequences of this conjecture, in [6], York showed that, in steady state, a correct approximate description emerges as Poisson’s equation in which the distribution of the free-running frequencies of the oscillators appears as a source term analogous to charge density in electrostatics [7]. A related approach, where a discrete array is modeled as a continuum of oscillators governed by a single global differential equation, has been described by Rand et al. [8] in a mathematical description of certain biological systems. Interestingly, their equations are virtually identical in form to those described in [6].

Reducing the problem to that of solving Poisson’s equation is remarkably useful. Considerable insight into the operation of these arrays can be obtained by analogy to the corresponding electrostatic problem. For example, previously reported beam-scanning techniques [1], which are difficult to explain intuitively, are reduced to an equivalent parallel-plate capacitor problem. In addition, since the system is described by a single differential equation, a new spectrum of analytical tools can be brought to bear on the problem, and this allows us to quantify both the steady state and dynamic behaviors of the array in new ways that increase our understanding of coupled-oscillator systems. Lastly, although not treated here, the continuum analysis can be generalized to two-dimensional arrays, resulting in a considerable computational advantage for large two-dimensional array systems.

In this paper, we focus on development of the continuum model and associated boundary conditions, with application to the analysis of time-dependent phase relationships in linear oscillator chains. In particular, a description of beam-settling time in a scanning application is obtained. Laplace transform techniques are used for the transient analysis, leading to analytic solutions for the phase evolution. We show that the phases evolve on a time scale that is related to the size of the array and the coupling strength and remain “well-behaved” in the sense of maintaining a well-defined beam pattern during the transient period.
II. DERIVATION OF THE CONTINUUM MODEL

Analysis of an array of $2N + 1$ coupled oscillators is embodied in the equation

$$\frac{d\theta_i}{dt} = \omega_{\text{tune},i} - N \sum_{j=-N}^{N} \Delta \omega_{\text{lock},i,j} \sin(\Phi_{ij} + \theta_i - \theta_j)$$ \hspace{1cm} (1)

for $i = -N, -N+1, \ldots, 0, 1, 2, \ldots, N$, which is, in essence [2, eq. (12)], repeated here for convenience. Φ_{ij} is the phase of the injection signal from oscillator j evaluated at oscillator i, the coupling phase, and α_{ij} is the amplitude of this signal while the inter-oscillator locking range is defined by

$$\Delta \omega_{\text{lock},i,j} = \frac{\epsilon_{ij} \omega_{\text{tune},i} \alpha_{ij}}{2Q_{i,j}}$$ \hspace{1cm} (2)

where Q is the quality factor of the oscillators and $\omega_{\text{tune},i}$ is the free-running frequency of the ith oscillator. α_i is the amplitude of the output signal of the ith oscillator. The phase θ_i is the phase of the ith oscillator, i.e.,

$$\theta_i = \omega_{\text{ref}} t + \phi_i$$ \hspace{1cm} (3)

where ω_{ref} is the reference frequency for defining the phase of each oscillator. Applying this to a one-dimensional array and following [2], we assume only nearest neighbor coupling, zero coupling phase, and that all of the inter-oscillator locking ranges are identical. This leads to

$$\frac{d\theta_i}{dt} = \omega_{\text{tune},i} - \Delta \omega_{\text{lock}} \sum_{j=\pm 1} \sin(\theta_i - \theta_j)$$ \hspace{1cm} (4)

which is [2, eq. (17)] under the assumption of zero coupling phase. This will be the starting point for the present derivation of the continuum model.

Assuming that the inter-oscillator phase differences are small, we approximate the sine function by its argument, thus obtaining

$$\frac{d\theta_i}{dt} = \omega_{\text{tune},i} - \Delta \omega_{\text{lock}} (\theta_{i+1} - \theta_i + \theta_i - \theta_{i-1})$$ \hspace{1cm} (5)

which, using (3), can be rewritten in the form

$$\frac{d\phi_i}{dt} = \omega_{\text{tune},i} - \omega_{\text{ref}} + \Delta \omega_{\text{lock}} (\phi_{i+1} - 2\phi_i + \phi_{i-1})$$ \hspace{1cm} (6)

for $i = -N, -N+1, \ldots, 0, 1, 2, \ldots, N$. At this point, we note that the quantity in parentheses is merely a finite-difference approximation for the second derivative of the phase with respect to a spatial variable x, which corresponds to the index i at integer values. Thus, (6) can now be easily recognized as the finite-difference approximation corresponding to the partial differential equation

$$\frac{\partial^2 \phi}{\partial x^2} - \frac{\partial \phi}{\partial t} = -\frac{\omega_{\text{tune}} - \omega_{\text{ref}}}{\Delta \omega_{\text{lock}}}$$ \hspace{1cm} (7)

for $-a - 1/2 \leq x \leq a + 1/2$, where $\phi(x, \tau)$ is the phase across the array and the unitless time τ is the time t multiplied by the locking range $\Delta \omega_{\text{lock}}$. The points $x = \pm a$ correspond to the index values $i = \pm N$. The array is taken to extend over $2N + 1$ unit cells with an oscillator at the center of each unit cell. This leads to the range of x noted above. Note that the driving function is the distribution of the oscillator free-running (tuning) frequencies relative to the reference frequency. Averaging (7) over the length of the array results in

$$\frac{\partial^2 \phi}{\partial x^2} - \frac{\partial \phi}{\partial \tau} = -\frac{\omega_{\text{tune}} - \omega_{\text{ref}}}{\Delta \omega_{\text{lock}}}. \hspace{1cm} (8)$$

The first term is zero because the integral of the second derivative of the phase over the length of the array is equal to the difference of the phase gradients evaluated at the endpoints, and they are both zero by virtue of the Neumann boundary condition there.\(^1\) Now, by definition, the instantaneous frequency of the oscillators is given by

$$\frac{\omega}{\Delta \omega_{\text{lock}}} = \frac{d\phi}{dt} + \frac{\omega_{\text{ref}}}{\Delta \omega_{\text{lock}}} \frac{\partial \phi}{\partial \tau}$$ \hspace{1cm} (9)

Substituting (9) into (8), we have that

$$\langle \omega \rangle = \langle \omega_{\text{tune}} \rangle$$ \hspace{1cm} (10)

Recognizing that in steady state all of these mutually locked oscillators will oscillate at the same frequency, we can interpret this to imply that this ensemble frequency is merely the average of the tuning frequencies, a result which has been previously obtained using the discrete model of such an array [2]. In the examples to follow, it will thus be convenient to set the reference frequency equal to the initial value of this ensemble frequency.

A. The Infinite Length Array

Consider now an array for which $a = \infty$, i.e., a linear array of infinite length. Let the oscillator at $x = b$ be detuned by an amount $\omega_{\text{tune},i}$ (measured in locking ranges) from the ensemble frequency at $x = 0$. This implies that the driving function for (7) may be represented by

$$\omega_{\text{tune}} - \omega_{\text{ref}} = -C(\tau)\delta(x - b)$$ \hspace{1cm} (11)

(Note that while it is not limited in this linearized theory, C is, in reality, limited by the fact that the magnitude of the sine function in (4) must be less than or equal to unity [see (A19)].) The Laplace transform of (7) with respect to τ is then

$$\frac{\partial^2 f}{\partial x^2} - s f = -\frac{C}{s} \delta(x - b)$$ \hspace{1cm} (12)

where $f(x, s)$ is the Laplace transform of $\phi(x, \tau)$ and $\phi(x, 0^+)$ is taken to be zero for simplicity. The resulting solution for the transform of the phase is

$$f(x, s) = \frac{C}{2s\sqrt{s}} e^{-a |x - b| \sqrt{s}}$$ \hspace{1cm} (13)

which is recognized as $-C/s$ times the Green’s function for (12). The inverse Laplace transform is then

$$\phi(x, \tau) = C \left[2\sqrt{\frac{\tau}{\pi}} e^{(x-b)^2/4\tau} - |x - b| e^{\sqrt{2\tau/\pi}} \right] u(\tau)$$ \hspace{1cm} (14)

The behavior of this function over the ranges $-10 \leq x \leq 10$ and $0 < \tau < 2500$ is shown in Fig. 2. Note that at infinite time, this function diverges as the square root of the time. That

\(^1\) Derived in Section II-B.
Fig. 2. The dynamic phase behavior of an infinite-length linear coupled oscillator array with one oscillator detuned.

is, the phase never reaches a steady-state value. However, differentiating this function with respect to time gives the dynamic behavior of the frequency in the form

$$\omega(x, \tau) = \omega_{\text{ref}} + \Delta \omega_{\text{lock}} \frac{C}{\sqrt{\pi \tau}} e^{-\frac{(x-b)^2}{4\tau}} u(\tau)$$

(15)

which at infinite time converges to the steady-state value equal to the original ensemble frequency ω_{ref} as one over the square root of the time. This is a manifestation of the fact that changing the tuning of one oscillator in an infinite array does not change the ensemble frequency. This frequency distribution is shown in Fig. 3.

At this point, one might question the use of the Dirac delta function to represent the spatial distribution of the detuning in (11), preferring instead the use of a unit amplitude square pulse one unit cell wide. The result of using this alternate representation can be readily obtained from (14) by numerical convolution and may thus be seen to differ very little from (14) itself. The greatest difference occurs at $x = b$ and the two results at this point are displayed as a function of time in Fig. 4 for comparison. We choose in this treatment to use the delta function representation for analytical convenience.

B. The Finite-Length Array

Consider now an array extending from $-a$ to a in x, thus having $2a + 1$ oscillators. To derive the dynamic behavior of the phase in such an array with the element at $x = b$ detuned, we must effectively add homogeneous solutions of (12) to the particular integral (14) so as to satisfy the boundary conditions at the ends of the array. These boundary conditions are most easily derived via the following artifice. Imagine one additional fictitious oscillator added at each end of the array. Let these additional oscillators each be tuned as a function of time in such a manner as to maintain the oscillator phase equal to the phase of the corresponding actual end oscillator. The resulting injection signals from the fictitious oscillators will then have no effect on the dynamics of the actual array. In this sense, the extended array simulates the actual array. However, since the phases of the fictitious oscillator at each end and the corresponding end oscillator are maintained equal, the phase gradient at the ends of the array is seen to be zero. Therefore, the boundary conditions at the array ends $x = a + 1/2$ and $x = -a - 1/2$ are seen to be the classical Neumann conditions independent of time. (It is interesting to note that the necessary tuning of the fictitious oscillators may be obtained from (4) if desired once the solution for the array phase dynamics has been obtained, as described below.)

Following the prescription suggested above, we postulate a solution of the form

$$f(x, s) = \frac{C}{2s\sqrt{s}} e^{-|x-b|\sqrt{s}} + C_I e^{-\sqrt{s}} + C_L e^{\sqrt{s}}.$$

(16)

One can then determine the unknown constants C_I and C_L by imposing Neumann boundary conditions at the array ends. The inverse Laplace transform is then easily expressed as a residue series over an infinite set of poles located on the negative real axis. However, we have found that it requires considerable experience with the algebra involved to effect simplification of the resulting expressions. Therefore, in this paper, we adopt an alternative approach, leading directly to the result in simplified form. We proceed as follows.

Recognizing that we are dealing with a self-adjoint boundary value problem of Sturm–Liouville type, it becomes clear that the Green’s function can be directly expressed as a linear combination of the normalized eigenfunctions of the differential operator satisfying the boundary conditions. These eigenfunctions are

$$u_n = \frac{\sqrt{2} \cosh(x \sqrt{s_n})}{\sqrt{2a+1}}$$

(17)

$$v_n = \frac{\sqrt{2} \sinh(x \sqrt{s_n})}{i \sqrt{2a+1}}$$

(18)

where s_n and s_m are given by

$$\sinh \left(\sqrt{s_n} \left(a + \frac{1}{2} \right) \right) = 0$$

(19)

and

$$\cosh \left(\sqrt{s_m} \left(a - \frac{1}{2} \right) \right) = 0.$$

(20)
That is,
\[s_n = -\left(\frac{2n\pi}{2n+1} \right)^2 = -\sigma_n \] \hspace{1cm} (21)
for \(n = 0, 1, 2, \ldots \), and
\[s_m = -\left(\frac{(2m+1)\pi}{2a+1} \right)^2 = -\sigma_n \] \hspace{1cm} (22)
for \(m = 0, 1, 2, \ldots \).

The Green’s function can thus be immediately written in the form
\[G(x', x; s) = \sum_{n=0}^{\infty} \frac{2 \cosh(x'\sqrt{s_n}) \cosh(x\sqrt{s_n})}{(2a+1)(s_n - s)} - \sum_{m=0}^{\infty} \frac{2 \sinh(x'\sqrt{s_m}) \sinh(x\sqrt{s_m})}{(2a+1)(s_m - s)} \] \hspace{1cm} (23)
where the tilde denotes the function in the transform domain.

Note that, despite the presence of the square roots, there is no branch cut because the solution is an even function of the square root of \(s \). The solution of (12) is, therefore,
\[\phi(x, s) = -C \sum_{n=0}^{\infty} \frac{2 \cosh(b\sqrt{s_n}) \cosh(x\sqrt{s_n})}{(2a+1)(s_n - s)} - C \sum_{m=0}^{\infty} \frac{2 \sinh(b\sqrt{s_m}) \sinh(x\sqrt{s_m})}{(2a+1)(s_m - s)} \] \hspace{1cm} (24)

The inverse Laplace transformation is now a trivial matter of evaluating the residue at the single pole in each term of the summations and the pole at the origin. (Of course, some care must be taken concerning the double pole at the origin arising from the zero eigenvalue term in the first summation.)

The result is
\[\phi(x, \tau) = \frac{C\tau}{2a+1} \]

The constant of integration is zero by virtue of the initial condition that the initial phase is zero, which was implicit in the Laplace transform of the differential equation (12). Thus, we can conclude that, aside from this linear term, the average of the phase over the array remains zero for all time. The behavior of an array with 21 oscillators when the oscillator at \(x = 5 \) is detuned by \(C \) locking ranges is displayed in Fig. 5, which is obtained by direct evaluation of (26) suppressing the term linear in time.

The first two summations in (25) are merely Fourier series expressions for the steady-state phase distribution and can be evaluated in closed form leading to
\[\phi_{ss}(x, \tau) = C \sum_{n=1}^{\infty} \frac{2 \cos(b\sqrt{s_n}) \cos(x\sqrt{s_n})}{(2a+1)s_n} \]
\[+ C \sum_{m=0}^{\infty} \frac{2 \sin(b\sqrt{s_m}) \sin(x\sqrt{s_m})}{(2a+1)s_m} \]
\[\cdot \left[x^2 + b^2 - (2a+1)|b - x| + \frac{1}{6} (2a+1)^2 \right] \] \hspace{1cm} (29)

As will be seen shortly, the quadratic steady-state phase is to be expected since it is basically a solution of Poisson’s equation with a constant source term.
The slowest exponential decay rate can be found by evaluating (22) for \(m = 0 \). Thus,

\[
\sigma_{\text{min}} \approx \left(\frac{\pi}{2a + 1} \right)^2
\]

indicating that the response time of the array under detuning of one oscillator is proportional to the square of the number of oscillators (for large \(a \)).

If the center oscillator is detuned, (22) is no longer the relevant set of eigenvalues because the corresponding residues are zero by symmetry. In this case, the slowest decay rate is found from the smallest nonzero member of the set (21), i.e.,

\[
\sigma_{\text{min}} \approx \left(\frac{2\pi}{2a + 1} \right)^2
\]

which represents a response time that is twice as fast as the nonsymmetrical case, but, nevertheless, again proportional to the square of the number of oscillators (again, for large \(a \)).

Similar results are obtained by superposition when multiple oscillators are detuned. The steady-state solution derived as a limit of the dynamic solution presented above can also be obtained directly without resorting to the Laplace transformation. This provides a useful analogy with electrostatics, as will be demonstrated in the Appendix.

III. THE DYNAMICS OF BEAM STEERING

The above theory can be applied to analyze the behavior of a linear array antenna (Fig. 1) in which the phases of the signals radiated by the elements are controlled by means of a coupled oscillator array. The technique is as described by Liao et al. [1], in which the output from each of the oscillators feeds a radiation element and the end oscillators in the array are detuned in opposite directions to generate a constant phase gradient across the aperture. The complete dynamic solution can be written as the difference of two solutions of the form (26). Each of these corresponds to detuning of the form (11) with unit step time dependence, one solution with \(b = a \) and one with \(b = -a \) using antisymmetrical tuning, i.e., \(\Delta \omega_L = -\Delta \omega_R = \Delta \omega_T \) in (A22). The result is

\[
\phi(x, \tau) = \frac{\Delta \omega_T}{\Delta \omega_{\text{lock}}} \sum_{m=0}^{\infty} \frac{2 \sin(b \sqrt{\sigma_m}) \sin(x \sqrt{\sigma_m})}{(2a+1)\sigma_m} (1-e^{-\sigma_m\tau}),
\]

This function is shown in Fig. 6 and the corresponding far-zone radiation pattern of a 21-element array with half-wavelength element spacing driven with these phases is shown in Fig. 7. Note that the pattern retains its basic shape, both main beam and sidelobes, throughout the transient period. The duration of the transient period is governed by the time constant (30).

IV. CONCLUDING REMARKS

A simplified theory describing the dynamics of coupled oscillator arrays has been presented. It has been shown that the steady-state limit of this formalism is analogous to electrostatics and, as such, is governed by Poisson’s equation with the electric charge density determined by the tuning of the individual oscillators in the array. The simplified theory has been applied to provide a description of the dynamics of beam steering achieved in the manner proposed by Liao et al. [1]. That is, the end oscillators of a linear array are detuned in opposite directions from the ensemble frequency, resulting in a linear phase variation across the array. A key result is that, in such an arrangement, the slowest time constant governing the dynamics is proportional to the square of the number of elements in the array.

APPENDIX

THE STEADY-STATE SOLUTION—ELECTROSTATICS ANALOGY

In this appendix, it is shown that the steady-state solution obtained above as a limit of the dynamic solution can also be obtained directly by solution of Poisson’s equation.

Returning to (7), we note that, in steady state, the oscillators will all oscillate at the same frequency \(\omega_0 \), the average of the tuning frequencies, and the phase will be constant with time. Therefore, \(\partial \phi / \partial \tau = (\phi / \partial \tau)(\omega_0 \theta + \phi) = (\omega_0 / \Delta \omega_{\text{lock}}) = \Omega_0 \) and the differential equation then takes the particularly simple form

\[
\frac{d^2 \phi}{dx^2} = -\rho
\]

where \(\rho = \Omega_{\text{lock}} - \Omega_0 \), \(\Omega_{\text{lock}} = (\omega_{\text{lock}} / \Delta \omega_{\text{lock}}) \), and \(\Omega_0 = \langle \Omega_{\text{lock}} \rangle \), i.e., Poisson’s equation of electrostatics where \(\phi \) is the analog of electrostatic potential and \(\rho \) is the analog of
charge density (divided by permittivity). This charge density is determined by the deviations of the tuning frequencies from \(\Omega_0 \) and, as such, its integral over the array is clearly zero, implying zero net charge. It is noted at this point that one may determine the tuning necessary to obtain any desired phase distribution along the array by merely substituting the desired phase function into (A1) and differentiating twice, with respect to \(x \), to obtain the tuning function. It will be of particular interest, however, to observe the phase distributions obtainable by tuning only two of the oscillators—those at the two ends of the array.

A. One Element Detuned

Assuming that a Green’s function \(G \) satisfying appropriate boundary conditions is known, the general solution can be written in the form

\[
\phi(x) = \phi_0 - \int_{-\infty}^{\infty} G(x, x') \rho(x') \, dx'
\]

(A2)

where \(\phi_0 \) is a constant phase-permitting selection of any desired phase reference. It is noted in passing that for an infinitely long array

\[
G(x, x') = \frac{1}{2} |x - x'|.
\]

We now proceed to construct the analogous solution for the present finite-length array extending from \(x = -a - 1/2 \) to \(a + 1/2 \) with the oscillator at \(x = b \) detuned by an amount \(C \). That is, we wish to solve, subject to Neumann boundary conditions at the endpoints of the array, the equation

\[
d^2 \phi \over dx^2 = \Omega_0 - C \delta(x - b).
\]

(A4)

This is, of course, equivalent to solving (12) for \(\phi \) with \(s = 0 \). As above, the solution can be written as a sum of the same eigenfunctions obtained above with eigenvalues \(-\sigma_m \) and \(-\sigma_n \), and the result would emerge exactly as the two series in (29) which, as shown above, can be summed in closed form. However, we find it more convenient to obtain the result by direct solution of (A4); thus, circumventing the series summation step. We proceed as follows. First, we postulate solutions to the left- and right-hand sides of the detuned oscillator at \(b \) in the form

\[
\phi_L(x) = \frac{1}{2} \Omega_0 x^2 + \beta_L x + \gamma_L,
\]

(A5)

for \(x \leq b \)

\[
\phi_R(x) = \frac{1}{2} \Omega_0 x^2 + \beta_R x + \gamma_R,
\]

(A6)

for \(x \geq b \)

Imposing the Neumann boundary conditions at the ends of the array, we find that

\[
\beta_L = -\frac{1}{2} \Omega_0 (2a + 1)
\]

(A7)

\[
\beta_R = -\frac{1}{2} \Omega_0 (2a + 1).
\]

(A8)

Requiring that the solutions have the same value at \(x = b \) yields

\[
\gamma_R - \gamma_L = \Omega_0 b (2a + 1)
\]

(A9)

so we write

\[
\gamma_L = \gamma - \frac{1}{2} \Omega_0 b (2a + 1)
\]

(A10)

\[
\gamma_R = \gamma - \frac{1}{2} \Omega_0 b (2a + 1)
\]

(A11)

and thus obtain

\[
\phi_L(x) = \frac{1}{2} \Omega_0 x^2 + \frac{1}{2} \Omega_0 (2a + 1) x + \gamma - \frac{1}{2} \Omega_0 b (2a + 1)
\]

(A12)

\[
\phi_R(x) = \frac{1}{2} \Omega_0 x^2 + \frac{1}{2} \Omega_0 (2a + 1) x + \gamma - \frac{1}{2} \Omega_0 b (2a + 1)
\]

(A13)

which can be written in the more compact form

\[
\phi(x) = \frac{1}{2} \Omega_0 x^2 - \frac{1}{2} \Omega_0 (2a + 1) b - x + \gamma.
\]

(A14)

Now, imposing the discontinuity condition on the derivative across \(x = b \),

\[
\frac{d\phi}{dx} \bigg|_{x=b^+} - \frac{d\phi}{dx} \bigg|_{x=b^-} = -\Omega_0 (2a + 1) = -C
\]

(A15)

which gives

\[
\Omega_0 = \frac{C}{2a + 1}
\]

(A16)

and this, of course, renders the average “charge density” zero as expected. Finally, using the fact that the average of the phase function over the array is zero, we obtain

\[
\gamma = \frac{2a + 1}{12} + \frac{b^2}{2(2a + 1)}
\]

(A17)

and the final result becomes

\[
\phi(x) = \frac{C}{2(2a + 1)} \times \left[x^2 + b^2 - (2a + 1) |b - x| + \frac{(2a + 1)^2}{6} \right]
\]

(A18)

in agreement with (29). Recalling now that to maintain lock the phase difference between two adjacent oscillators is limited to \(\pi/2 \), which limits the phase gradient, one can show from (A18) that \(C \) is limited to

\[
C < \frac{\pi (2a + 1)}{2(a + |b|)}.
\]

(A19)

Recall that \(C \) is the amount of detuning measured in locking ranges. In the linearized theory, this would imply, for example, that for a very large array, i.e., for a very large value of \(a \), the maximum amount of detuning of a single oscillator would approach \(\pi \) locking ranges. However, it is possible to improve on this linear theory estimate by defining an “effective locking range” \(\Delta \omega_{\text{lock}} \), as follows. Instead of replacing the sine function with its argument, we rewrite the sine terms in the form

\[
\Delta \omega_{\text{lock}} \sin(\Delta \phi) = \Delta \omega_{\text{lock}} \frac{\sin(\Delta \phi)}{\Delta \phi} \Delta \phi = \Delta \omega_{\text{lock}} \Delta \phi.
\]

(A20)

Now, for small inter-oscillator phase difference \(\Delta \phi \), this effective locking range will be approximately equal to the
true locking range. However, near the limits of lock, it will approach \(2/\pi\) times the true locking range. Thus, the maximum amount of detuning is more accurately represented by the formula
\[
\Delta \omega_{\text{max}} \approx \frac{2a + 1}{\alpha + |\beta|} \Delta \omega_{\text{lock}} \tag{A21}
\]
instead of (A19) and for a very large array, this will approach two locking ranges instead of \(\pi\) locking ranges. This, of course, is still only an estimate because the solution (A18) was obtained under the assumption of constant effective locking range when, in fact, the effective locking range defined by (A20) varies from oscillator pair to oscillator pair for any, but a linear, phase variation. One can say, however, that this represents an upper bound on the detuning for nearest neighbor coupling because the maximum sum of two sine functions is two, thus, the detuning can never exceed two true locking ranges.

B. End Elements Detuned

We now investigate the aperture phase behavior when only the end oscillators are detuned, i.e., when
\[
\omega(x) = \omega_0 + \Delta \omega_L \delta(x + a) + \Delta \omega_R \delta(x - a) \tag{A22}
\]
By superposition, the result can be immediately written as the sum of two expressions of the form (A18) with \(b = a\) and \(b = -a\). The result is
\[
\phi(x) = \left(\frac{\Delta \omega_L + \Delta \omega_R}{2\Delta \omega_{\text{lock}}}\right) \left(\frac{x^2 + b^2}{2a + 1} + \frac{2a + 1}{6}\right) - \frac{\Delta \omega_R - \Delta \omega_L}{2\Delta \omega_{\text{lock}}} x. \tag{A23}
\]
From this expression, it is clear that the sum of the detunings at the two ends determines the quadratic part of the phase, while the difference determines the linear part of the phase. Thus, equal and opposite detuning of the end oscillators produces a linear steady-state phase distribution in the aperture and, consequently, steers the beam. Of course, any detuning of the end oscillators can be resolved into even and odd parts with the even part controlling the quadratic phase and the odd part controlling the linear phase.

ACKNOWLEDGMENT

The authors would like to thank Dr. J. W. Mink, North Carolina State University, Raleigh, for expressing interest in the issue of array dynamics at the Spatial and Quasi-Optical Power Combining Workshop, Santa Barbara, CA, March 27–28, 1997. The research described in this paper was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, Pasadena, CA.

REFERENCES

Paolo F. Maccarini was born in Torino Italy, in 1971. Selected for a Double Diplome European Program, he received the B.S.E.E. degree in telecommunications from the Enserg, Higher Institute of Electronics, Grenoble, France, the M.S.E.E. degree in video/sound treatment from INPG, Grenoble, France, and is currently working toward the proclamation of the Italian degree in wave propagation. He is also currently working toward the M.S. and Ph.D. degrees at the University of California at Santa Barbara.

Robert A. York (S’85–M’89) received the B.S. degree in electrical engineering from the University of New Hampshire, Durham, in 1987, and the M.S. and Ph.D. degrees in electrical engineering from Cornell University, Ithaca, NY, in 1989 and 1991, respectively. He is currently an Associate Professor of electrical and computer engineering at the University of California at Santa Barbara (UCSB). His group at UCSB is currently involved with the design and fabrication of novel microwave and millimeter-wave circuits, microwave photonics, high-power microwave and millimeter-wave modules using spatial combining and wide-bandgap semiconductor devices, and application of ferroelectric materials to microwave and millimeter-wave circuits and systems.

Dr. York received the Army Research Office Young Investigator Award in 1993 and the Office of Naval Research Young Investigator Award in 1996.
Corrections to “A Continuum Model of the Dynamics of Coupled Oscillator Arrays for Phase-Shifterless Beam Scanning”

Ronald J. Pogorzelski, Paola F. Maccarini, and Robert A. York

In the above paper,1 the normalized \(u_0 \) eigenfunction in (17) should not have the factor of \(\sqrt{2} \) in the numerator. All the other \(u_n \) and \(\nu_m \) eigenfunctions are correct as shown. This means that (23) should read

\[
\hat{G}(x, x'; s) = \sum_{n=0}^{\infty} \eta_{n0} \frac{\cosh \left(x' \sqrt{s_n} \right) \cosh \left(x \sqrt{s_n} \right)}{(2n + 1)(s_n - s)}
\]

\[
- \sum_{m=0}^{\infty} \frac{2 \sinh \left(x' \sqrt{s_m} \right) \sinh \left(x \sqrt{s_m} \right)}{(2m + 1)(s_m - s)}
\]

where \(\eta_{ij} = 2 \) for \(i \neq j \) and 1 for \(i = j \). Similarly, this \(\eta \) factor should also replace the factor of "2" in the first summation of (24). Also the lower limit on the third summation in (25) and that in the first summation of (26) should be “1” instead of “0.” Finally, the trigonometric functions in the second summation of (26) should be sines instead of cosines.

Corrections to “Continuum Modeling of the Dynamics of Externally Injection-Locked Coupled Oscillator Arrays”

Ronald J. Pogorzelski, Paola F. Maccarini, and Robert A. York

In the above paper,1 equation (49) should read as follows:

\[
A_n e^{-\sigma_\nu \tau} g(\tau) = A_n e^{-\sigma_\nu \tau} \left\{ e^{\nu_1} e^{\nu_2} / (4 \alpha) \frac{1}{\sqrt{\pi \alpha}} \left[\text{erfc}(\nu_1) - \text{erfc}(\nu_2) \right] \right\} \frac{\pi}{2}.
\]

Manuscript received March 28, 2000.
R. J. Pogorzelski is with the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA.
P. F. Maccarini and R. A. York are with the Department of Electrical and Computer Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106 USA.
Publisher Item Identifier S 0018-9480(00)06547-9.