Microwave Planar Capacitors Employing Low Loss, High-K, and Tunable BZN Thin Films

Jaehoon Park, Jiwei Lu†, Susanne Stemmer†, and Robert A. York
Department of Electrical and Computer Engineering, †Materials Department
University of California Santa Barbara, Santa Barbara, CA 93106

Abstract — Planar capacitors having high Q factor and tunability were implemented with cubic pyrochlore Bi$_{1.5}$Zn$_{1.0}$Nb$_{1.5}$O$_7$ (BZN) thin films deposited by RF magnetron sputtering. Device Q factors (Q_{DUT}) and capacitances (C_{DUT}) were measured using reflection coefficients based on vector network analyzers on Vycor glass and sapphire substrates, respectively. Q factors (Q_{int}) accounting for electrode and dielectric losses remained above 200 up to 20 GHz and around 1000 up to several GHz for the smaller devices on sapphire substrate and there was no sign of onset of dielectric relaxations. With the electric field dependent permittivity, the BZN thin films can be the alternative to conventional BST thin films.

Index Terms — Dielectric properties, Bismuth Zinc Niobate, Low-loss, Thin films

I. INTRODUCTION

Metal-Insulator-Metal (MIM) capacitors employing high permittivity thin film technologies are one of the most extensively researched passive microwave components due to their relatively large fraction in the integrated circuits and the effort on increasing capacitance density and Q factors in CMOS technologies. Thin films exhibiting electric-field dependent permittivities are recently being explored for microwave frequency agile devices such as phase shifters and filters. In addition to a large tunability, these devices require dielectrics with low dielectric losses (tan δ) in the microwave frequency range. For room temperature applications, thin films of ferroelectrics such as (Ba,Sr)TiO$_3$ (BST) have been widely researched [1]. However, the synthesis of low loss BST thin films has proven to be challenging. In addition to intrinsic loss mechanisms, losses in BST films are determined by point defects, which are often difficult to control in thin film deposition. Lately, thin films of a non-ferroelectric material, Bi$_{1.5}$Zn$_{1.0}$Nb$_{1.5}$O$_7$ (BZN), having the cubic pyrochlore structure and high dielectric constant (170–200) have attracted interests for tunable applications due to very low losses (\sim5×10$^{-4}$) and large tunabilities (\sim55%) at low frequencies (\sim1 MHz) [2-6]. The field tunability $\Delta \varepsilon$ is defined as $(\varepsilon_{\text{max}} - \varepsilon_{\text{min}})/\varepsilon_{\text{max}}$, where ε_{min} is the minimum measured permittivity at the maximum applied field, and ε_{max} is the dielectric constant at zero bias.

BZN ceramics exhibit a low temperature dielectric relaxation that is accompanied by a dielectric loss peak. This loss peak shifts to higher temperatures with higher frequencies, approaching room temperature in the microwave frequency region [7-9]. Therefore, bulk BZN is alleged inappropriate for low losses applications. Thin films, however, have different properties. For example, we have recently shown that tensile film stresses, on account of the thermal mismatch with substrates, reduce the activation energy of the dielectric relaxation and require higher frequencies to shift the dielectric relaxation into higher temperatures [10]. Thus BZN films can be presumably very promising for low loss and microwave frequency applications. Unfortunately, only single study has been reported on microwave dielectric measurements of BZN films at a single frequency so far [11].

The dielectric responses of BZN thin film capacitors are reported in this paper over a broad frequency range in the GHz region and very high Q factors can be obtained in tunable devices employing BZN films.

II. FABRICATION AND LOW FREQUENCY CHARACTERISTICS

BZN thin film capacitors were fabricated on Vycor glass (500 µm) and sapphire substrates (330 µm), respectively. The process details were as follows. The BZN film was deposited by RF magnetron sputtering after Ti/Pt (250/2000Å) bottom electrode deposition. Detailed sputter conditions are summarized in table 1 [3,14].

<table>
<thead>
<tr>
<th>Sputter Parameters</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Pressure</td>
<td>1×10$^{-3}$ Torr</td>
</tr>
<tr>
<td>Target-Substrate Distance</td>
<td>4 inch</td>
</tr>
<tr>
<td>Substrate Temperature</td>
<td>RT ~ 300 °C</td>
</tr>
<tr>
<td>Substrate rotation</td>
<td>30 rpm</td>
</tr>
<tr>
<td>Overall gas pressure</td>
<td>50 mTorr</td>
</tr>
<tr>
<td>Ar/O2 flow rate ratio</td>
<td>85/15</td>
</tr>
<tr>
<td>Plasma power</td>
<td>150 Watts</td>
</tr>
<tr>
<td>Annealing atmosphere/ Temperature</td>
<td>Air/750 °C</td>
</tr>
</tbody>
</table>

Table 1 BZN Sputter conditions
The film thickness was \(\sim 3000\,\text{Å}\) and the capacitance density under this conditions leaded to \(\sim 5\,\text{fF/µm}^2\). Films were patterned using 1:10 HF solution for 60 seconds. An ex-situ annealing at 750°C in air for 5 minutes was carried out to crystallize the films. A 2000Å SiO\(_2\) crossover layer was evaporated for passivation of the bottom electrode, and a 5000Å Au top electrode was patterned by a lift-off process. A rapid thermal annealing (RTA) at 700°C for 30 seconds was performed and thick Au (1µm) metal contacts for probe measurements were evaporated to form the low-resistance interconnects and probe pads. Devices were separated by at least by 200 µm from each other to avoid cross-talk among them. The cross-sectional layout of the BZN capacitors is shown in the inset of Fig. 1.

Dielectric constant, \(Q\) factors, and tunabilities of the films at low frequencies (less than 100 MHz) can be obtained using relatively large area MIM capacitor structures. The maximum tunability was \(\sim 30\%\) for the microwave devices as Fig. 1. This tunability was less than that of larger area devices on un-prepatterned bottom electrodes used for low-frequency measurements [3], shown for comparison in Fig. 1. The lower tunability of the films in the microwave devices was due to a lower dielectric strength that did not permit the application of large enough fields required for high tunabilities. The lower breakdown strength may be due to degradation of the air-exposed prepatterned electrode or due to field concentration at the edges.

III. MICROWAVE FREQUENCY CHARACTERISTICS

At microwave frequencies, resistive and inductive parasitics in the capacitors strongly influence the measurements and data interpretation [12,13]. Devices with a small area are advantageous because they have a lower intrinsic capacitance, thus avoid self-resonance, and minimize extrinsic losses. However, small device areas lead to increased ohmic loss, and the high intrinsic capacitance densities of thin films of tunable dielectrics such as BZN and BST require electrode areas that are smaller than typical on-wafer probe tips, making measurements challenging. Relatively thick (~3000Å) BZN films were used for the microwave frequency characterization to alleviate these problems in this work. Rectangular MIM capacitors with areas between 50 and 900 µm\(^2\) were fabricated that were subsequently interconnected to a larger metal contact or transmission-line that was probe-able. Depending on their size, the device capacitances ranged between 0.1 and 4 pF, which corresponds to values of nearly all microwave circuit applications.

![Fig. 2 Measured reflection coefficient (S\(_{11}\)) of BZN thin film capacitor on sapphire substrate for 100 µm\(^2\) capacitor.](image)

\[
\begin{align*}
Z_{\text{ext}} &= \frac{Z_{\text{op}}^2(Z_{\text{DUT}} - Z_{\text{sh}})}{(Z_{\text{op}} - Z_{\text{DUT}})(Z_{\text{op}} - Z_{\text{sh}})} \bigg|_{Z_{\text{op}} \to \infty} \approx (Z_{\text{DUT}} - Z_{\text{sh}}) \quad (1a) \\
Q_{\text{ext}} &= \frac{\text{Im}(Z_{\text{ext}})}{\text{Re}(Z_{\text{ext}})} \quad (1b) \\
C_{\text{ext}} &= \frac{-1}{\omega \times \text{Im}(Z_{\text{ext}})} \quad (1c)
\end{align*}
\]

Fig. 1 Bias field dependence of the permittivity of 1500Å thick BZN film in a planar vycor/Pt/BZN/Pt capacitor structure (capacitor area: 2000 µm\(^2\), open blue) and a 360 µm\(^2\) microwave capacitor (solid black), both measured at 1 MHz. The inserts show a schematic cross-section of the microwave capacitor (bottom) and a photograph of the device (upper left).
Fig. 3. Total device quality factor Q_{DUT} (black) and capacitance C_{DUT} (blue) on each substrate for two different area devices.
(a) Vycor glass substrates (○: 64 µm2, ●: 100 µm2)
(b) Sapphire substrates (○: 100 µm2, ●: 225 µm2)

Fig. 4. Intrinsic quality factor Q_{int} (black) and capacitance C_{int} (blue) for BZN capacitors after accounting for pad parasitics
(a) Vycor glass substrates (○: 64 µm2, ●: 100 µm2)
(b) Sapphire substrates (○: 100 µm2, ●: 225 µm2)

There was no indication of an onset of a dielectric relaxation, which would exhibit a much stronger frequency dependence [7]. The quality factor Q_{int} was frequency dependent but remained above 200 up to 20 GHz and around 1000 up to several GHz for the smaller device. The large scatter in the high Q-factor data is a limitation of network analyzer measurements as the device impedance moves away from 50 Ohms. The observed device area or periphery dependence of the quality factor Q_{int} is presently not understood but has also been observed for high-Q BST thin film capacitors [15]. The results suggest that the device performance at high frequencies is not limited by intrinsic BZN film losses, because such losses would be area (or periphery)-independent and would be accompanied by a
stronger capacitive dispersion. The decrease in Q factor with increasing frequency is at least partially due to electrode conductor losses, which in the absence of other effects can easily dominate the device quality factor in small-area capacitors at high frequencies [3,16]. Low-frequency measurements of large-area capacitors showed that the contributions of electrode losses to the device quality factor became significant above 100 MHz [3]. The contributions of top and bottom electrodes may depend on device geometry [15]. It is also possible that an interfacial layer at the metal/dielectric interface that cannot be neglected at microwave frequencies contributes to the device quality factor [16]. The possible reason for obtaining higher Q factors with sapphire substrates may be the higher dielectric constant and lower loss of the substrates. Work is underway to reduce the contribution from the bottom electrode to the device Q-factor by using thicker electrodes with a higher conductivity and by optimizing the device design [16,18]. Thus, despite significant contributions from the electrodes and other unaccounted parasitics to the device Q-factor, the much higher Q-factors of thin film devices showed that the BZN thin films investigated in this study had much lower intrinsic losses than bulk BZN at similar frequencies.

IV. CONCLUSION

High Q factor capacitors were realized using low loss, tunable, and high-permittivity BZN thin films. The dielectric properties were evaluated up to 20 GHz by measuring reflection coefficients. The intrinsic Q factors remained above 200 for entire frequency range and higher than 1000 up to several GHz range. The capacitors employing BZN thin films can be very promising to any of low loss microwave circuit applications due to high Q factors as well as the tunability.

ACKNOWLEDGEMENT

This research was supported by an Army Research Office MURI program, grant #DAAD19-01-1-0496 and by the NSF (NSF-DMR-0307914).

REFERENCES