
KMCInterative: an interactive molecular beam epitaxy kinetic

Monte Carlo simulator for education

Michael Grundmann

November 20, 2006

Abstract

A fast Monte Carlo simulator with a graphical user interface is an ideal education tool for students

learning about molecular beam epitaxy (MBE). This paper discusses the implementation of such a simulator,

as well as simulation techniques that may be used to tailor surfaces. Simulations carried out on the learning

tool show how MBE can recover step-flow growth, in addition to the temperature dependence of the surface

morphology.

1 Introduction

Figure 1: Screenshot of KMCInteractive

KMCInteractive (figure 1) is a solid–on–solid kinetic

Monte Carlo (KMC) simulation program that is de-

signed to be fast and have an easy to use user in-

terface for education purposes. Monte Carlo simu-

lations have long been performed to explain experi-

mental results[2, 7, 6], but recent personal computer

hardware is now sufficient to solve reasonably com-

plex problems in a short amount of time. In 1987,

Vvedensky et al. used a Cray X-MP/48 supercom-

puter to perform KMC calculations for MBE on a

1,000 site grid[2]. These computers cost roughly $16

million dollars and performed roughly 220 MFLOPS

(million floating point operations per second)[1]. By

1

comparison, an Apple Power Mac G5 currently costs less than $2,000 and can perform up to 8

GFLOPS per processor on vector optimized code[4]. x86 processors have similar performance.

Though FLOPS may not be an ideal indicator of performance, these number nonetheless show that

modern desktop computers now have the computing power that was previously reserved for super-

computers. Therefore, many simulations that previously needed supercomputers may now be done

faster on a desktop computer.

In addition to the increases in modern processor performance, display technology has been

exceeding Moore’s law for several years and has made the display of complex scientific data relatively

simple, with the additional benefit of offloading the main computer processor for simulation tasks.

KMCInteractive takes advantage of these improvements by displaying the simulation as it executes

in a 3-dimentional plot.

2 Implementation

Monte Carlo simulation is a very compute-time intensive task. In order to create a simulation that

can be seen in a reasonable amount of time and view the results in a responsive graphical user

interface, a quad tree data structure stores the rate information, and the simulation takes place in

a separate thread from the user interface. A lockable object is used to pass information between

the view and simulation threads.

2.1 Quad tree

Each simulation iteration, an event is selected from an event stack. In general, a random number

R is chosen such that 0 ≤ R ≤
∑

ri where ri is the rate for event i. After choosing the number,

the program finds the event j such that
∑j

0 ri ≤ R <
∑j+1

0 ri. The naive approach is to construct a

list containing all of the events and iterate through the list until the above conditions are satisfied.

However, if the list has a length n this takes O(n) operations, and performing local updates to the

rate equations also takes O(n) operations. A common approach in Monte Carlo algorithms is to

use a binary tree[5] to store the rate information. Finding the appropriate event j takes O(log n)

operations using a binary tree. This technique speeds up searches considerably. For the sake of

clarity, operations are defined loosely here as the number of sites each algorithm must visit; it

does not take into account additional overhead. For instance, to find an event in a 128 x 128 grid

would take roughly 4000 operations on average using the list approach, while it would take about

2

14 operations using a binary tree. A binary tree has the additional benefit that its operation count

to find a node is always the same, while the list in the above example has a worst case search time

of over 8000 operations (though a best case search time of 1 operation.) Despite the search time

advantage, a binary tree does not provide a convenient framework in which to update local rates

after each iteration, which could still require O(n) operations.

Figure 2: Traversing a quad tree.

The top node is the root of the tree,

and the bottom 4x4 grid contains the

leaves of the tree in a 2n x 2n n = 2

tree.

KMCInteractive uses an extension of the binary tree

algorithm mentioned above. Instead of each node in the

tree having two children, each node in KMCInteractive has

four children, thus it uses a quad tree[5]. In this scheme,

the locality of neighboring sites is preserved in the data

structure, so updates are straightforward. The quad tree

search algorithm also runs in O(log n) time, so there is no

penalty over the binary tree in using it.

To produce an efficient quad tree, the simulation grid

is a square with edges 2n in length, so that the depth of

the tree is simply n. Each node in the tree has a value

associated with it that is a rate. The top level node has the

value rtot, which is the sum of the rates in all of the leaf

nodes in the tree. Each of its children nodes have values

that are the sum of their particular quarter of the overall

space. Each subdivision breaks the total sum rtot into four

sub-rates kji where j is the depth from the root in the quad

tree and i = 1..4 is the index of the four children that are the sum of the rates in the branch. For

example,
∑

k2i = rtot, the sum of all the rates in the system, and
∑

k3i = k2m where m denotes

one of the four children of the root node.

The algorithm to find the event associated with rate ri is as follows. A random number R0 is

chosen using the above constraints. Rj , the modified random number at level j is then compared

until
∑n

i=1 kji > Rj to find the child node with index n that contains the specified branch of interest.

The program then visits the child node with a modified random number Rj+1 = Rj−
∑n

i=1 kji until

it reaches a leaf node. The leaf node is the event of interest and is executed.

After each event step, it is necessary to update the rate tree with new rates since the system has

3

changed state. Instead of updating every leaf node in the tree, it is possible with quad tree to just

update the nearest neighbors of the node of interest, taking O(log n) operations instead of O(n)

operations to update the entire tree. On a 128 x 128 grid, this decreases the computation time by

roughly three orders of magnitude.

2.2 Thread Structure

A compute intensive task like Monte Carlo simulation generally makes interactive user interfaces

difficult to create in a single-threaded environment. In order to circumvent this problem, many such

programs are written with a multi-threaded design. KMCInteractive uses two threads: one for the

user interface and display of data, and another for Monte Carlo calculations. Since both threads

access the same data, the program uses standard mutual exclusion devices ensure only one thread

is reading from or writing to the shared data[8].

2.3 Application Programming Interfaces (APIs)

The user interface for KMCInteractive is written in objective-C++ using the Cocoa API for Ap-

ple Macintosh OS X applications. The 3–dimensional display uses standard OpenGL API calls

for portability. The Monte Carlo backend is written in standard C for maximum inter-platform

portability, with an interface that is objective-C++ to handle the mutual exclusion operations on

the data.

2.4 Rates

KMCInteractive has six types of events: hopping in four directions, desorption and adsorption.

Each type of event at each lattice site is associated with a rate.

There are four types of hopping (diffusion) events: up, down, left and right. Each event has the

rate:

rhop = ν exp
(
−Ehop + n∆E

kbT

)
Where ν = (kbT)/h is the vibrational frequency, typically of the order 1013s−1, Ehop is a character-

istic energy associated with diffusion, n is the decrease in number of nearest neighbors caused by a

hop, and ∆E is the binding energy of two atoms.

The total adsorption rate is set by the incoming flux Φ in ML/s.

Rads = AΦ

4

where A is number of sites (equivalent to the area of the grid.) This simply gives the adsorption

rate per site as rads = Φ.

Desorption rates are calculated in similar fashion to hopping rates:

rdes = ν exp
(
−nEdes

kbT

)
where Edes is the energy required to break a bond to a nearest neighbor, and n is the number of

nearest neighbors, including the underlying atom. In most simulations, Edes can be set to a large

value to avoid adatom desorption, unless this is the focus of the study.

In practice, all rates are pre-computed and stored in arrays for quick access. Floating point

operations can be very costly in terms of computation time, and since the rates do not change,

pre-computation improves the execution time. When the user makes a change in the user interface,

the rates are updated, and simulation continues.

2.5 Consequences of Rate Calculation Simplification

The simplifications that hopping rates in KMCInteractive only include nearest neighbors and atoms

may only hop to nearest neighbor sites introduces artifacts in the simulation that may be alleviated

by including second nearest neighbors in calculations. An artifact that is visible is that columns of

atoms may form on the surface. When an atom binds to the end of a column, it has reached its

local minimum in energy, since there is no direct hopping path to the side of a column and even if

an atom could hop to the side of a column, the energy associated with that site is the same as at

the end. In order to bind to the side of a column, the atom must first break its bond to the column

to hop away, then hop to the edge, requiring a low-rate event in the nearest neighbor hopping

framework. When including second nearest neighbors, the site on the side of a column adjacent to

the end has a lower energy due to the additional bond to the second nearest neighbor. Also, the

adatom may hop directly to the energetically favorable binding spot directly.

This artifacts is not removed in KMCInteractive to keep the simulation rate high. Many re-

search Monte Carlo simulations use a similar rate calculation scheme with excellent agreement with

experimental results, despite the problems mentioned here[2, 3].

2.6 Boundary Conditions

5

Figure 3: An island pinned in size by

periodic boundary conditions. Note

the island is split across a boundary.

KMCInteractive uses periodic boundary conditions to pre-

serve particle number. For stepped structures, one edge of

the grid is assumed to be n particles higher than the other,

where n is the number of steps. These boundary conditions

can clearly be observed by noting that islands that form at

the ends of the grid wrap around to the corresponding grid

sites. Periodic boundary conditions may have an important

effect on some growth conditions, since the grid size sets the

maximum spacing between nucleating islands, and thus the

maximum island size.

3 Simulation Techniques

There are several techniques in KMCInteractive that can

be used to simulate different growth conditions.

3.1 Rough Surfaces

KMCInteractive produces a smooth surface when the simulation starts. A rough surface can be

obtained two different ways. First, the surface can be statistically roughened by reducing the surface

mobility of the adatoms. This is easily accomplished by lowering the growth temperature to 0K. In

this case, adatoms are randomly delivered to the system and stick where they land.

The other roughening technique is thermal roughening. To obtain a completely roughened

surface, the temperature must be increased and the bond energy decreased. To find where a

completely rough surface is obtained, one can plot the Gibb’s free energy versus surface coverage

function for the surface fg/w = 4θ(1− θ) + kbT/w(θ ln(θ) + (1− θ) ln(1− θ)) where θ is the surface

coverage in monolayers and w is the bond strength and find the temperature and bond energy

combination that provides a curve that satisfies ∂f
∂T > 0 at all surface coverages. This yields a

roughening temperature of Trough = 2w/kb[9]. This model does not take into account multi-layer

roughening, which occurs in these simulations, but this value for Trough is a good estimate of the

roughening temperature, as is shown in section 4.2.

In practice, one may simply reduce the bond energy to zero. At this limit, the only component

in the Gibb’s free energy is entropy, so the surface will randomize.

6

3.2 Step-flow growth

Step-flow growth can be simulated on both rough and smooth miscut surfaces. To simulate growth

starting on a smooth miscut surface, the number of steps may be selected in the Materials Param-

eters box, and the simulation should be reset. To simulate growth on a rough surface, the number

of steps may be chosen, and the surface roughened using one of the techniques listed in section 3.1.

The proper growth conditions must be met to achieve step-flow growth. For example, usingthe

default material parameters of Edes = 20eV, Ehop = 2.0eV, ∆E = .5eV, 3 steps, and Φ = 1ML/s,

the growth temperature for step-flow is between 1250 K and 1300 K. See section 4.1 for more details.

3.3 Islanding

In an intermediate regime between statistical roughening and layer-by-layer or step-flow growth, the

surface grows by nucleating islands. In this growth regime, the adatoms have a high enough surface

mobility to migrate, but stick readily to other atoms migrating on the surface, thus nucleating

islands.

3.4 Phase separated surfaces

To view a phase separated surface, stop the simulation using the ‘stop’ button. See section 4.2 for

more details.

3.5 Annealing

Growth surfaces may be annealed by reducing the flux to 0 ML/s. It is important to keep the

temperature above roughly 20K to avoid singularities in the event stack and reduce underflow error

in the rate calculations while the flux is 0 ML/s. See section 4.2 for more details.

4 Simulations

4.1 Morphology Recovery

MBE has been shown to be effective at smoothing rough surfaces. To show this, one can cre-

ate a rough surface in KMCInteractive using statistical roughening by lowering the temperature

to 0K and letting about 40 ML of atoms deposit on the surface. After this, the simulation is

7

stopped, and the temperature increased to 1100 K, 1200 K or 1300 K. The materials parameters

used here are Edes = 20eV, Ehop = 2.0eV, ∆E = .5eV, 3 steps, Φ = 1ML/s, and a grid size of 64.

Figure 4: Statistically rough-

ened surface

Figure 4 shows a typical roughened surface before recovery takes

place. Figure 5 shows the surface at various after various amounts

of material deposition. At 1100 K, the surface has become ordered

at 0.25 ML, but there is little step structure, while at 1300 K the

step structure is already apparent at θ = .25ML. At .5 ML sur-

face coverage, the simulation at 1300 K has completely recovered

the step structure, while at 1100 K the surface is still character-

ized by islands that nucleate on the terraces. Beyond .5ML the

simulation at 1300 K grows by step-flow growth, and at 1200 K

the simulation grows via step-flow after roughly 1ML. The 1100

K simulation starts to loosely resemble step-flow growth at 10ML;

however, islands form and then are swept up and incorporated into the steps as they coalesce.

Future versions of KMCInteractive could calculate the step edge density in order to view the

RHEED oscillations that occur during growth on terraced surfaces[2, 7]. If this were the case, oscil-

lations would be quenched in the 1300K sample, since step-flow growth occurs almost immediately,

and the step density (correlated to the number of dangling bonds in the plane of the substrate[7])

does not change drastically during growth.

4.2 Annealing

A study of surface morphology as a function of temperature may be carried out by depositing the

desired coverage in KMCInteractive and then changing the flux to zero. Figure 6 shows the results

of this method for a range of temperatures. The materials parameters used here are Edes = 20eV,

Ehop = 2.0eV, ∆E = 0.2eV, 3 steps, Φ = 0ML/s, and a grid size of 64. One-half of a monolayer

was deposited before carrying out the annealing simulations.

A simple model discussed by Tsao helps to quantitatively describe the system, though the

model accounts for single layer roughening only. This is not the case in this KMC simulation,

as can be seen in the snapshot at 2500 K in figure 6. The same formulation used to predict the

roughening temperature in section 3.1 is used here to explain the differences in surface morphology

as a function of temperature. The free energy of a single layer rough system is predicted to be

8

fg/w = 4θ(1− θ) + kbT/w(θ ln(θ) + (1− θ) ln(1− θ)) where θ is the surface coverage in monolayers

and w is the bond strength. This is plotted in figure 6 for the different temperatures simulated. At

250 K, the local minima near θ = 1 and θ = 0 are not visible, but the snapshot shows that there are

local minima, and the surface separates into two phases along the common tangent between these

minima - occupied, and vacant, to satisfy θ = 0.5. The surface at 500 K shows similar properties to

250 K, but some deviation from theory that may be attributed to additional layers being available

to participate in roughening can be seen. At 1000 K, the surface is still separated into two phases,

but the two phases are themselves somewhat rough, so the surface begins to roughen, though there

is still order to it. At 2000 K, the surface is still slightly ordered, but may enter a metastable phase

of being completely roughened. At 2500 K, the surface is completely rough and randomized.

5 Conclusions

KMCInteractive is a tool that may be used to teach about MBE topics such as growth modes,

surface smoothing, and surface morphology in a visual and interactive way previously unavailable.

The program’s speed is increased with a quad tree to sort the rate data and update after each

iteration step, and a user-friendly interface defines the material and growth parameters, which can

be changed dynamically during the simulation. Not discussed at length in this paper is the ability of

KMCInteractive to demonstrate layer-by-layer growth, and how this growth mode affects the growth

window to achieve a smooth surface when compared to step-flow growth on a miscut surface, but

this topic may be easily explored using the program.

References

[1] The CRAY X-MP/48. http://www.scd.ucar.edu/computers/gallery/cray/xmp/xmp.html.

Last retrieved 7 June, 2005.

[2] S. Clarke and D.D. Vvedensky. Origin of reflection high-energy electron-diffraction intensity

oscillations during molecular-beam epitaxy: A computational modeling approach. Physical

Review Letters, 58(21):2235–2238, May 1987.

[3] Martha A. Gallivan. Modeling and Control of Epitaxial Thin Film Growth. PhD thesis, California

Institute of Technology, 2003.

[4] IBM. IBM PowerPC 970FX RISC Microprocessor User’s Manual.

9

[5] Peter Kratzer. Applications of kinetics to surface science and simulations of epitaxial growth.

http://w3.rz-berlin.mpg.de/∼kratzer/kmc/application1.pdf, 2002. An overview of var-

ious KMC methods. Last retrieved 7 June, 2005.

[6] A. Madhukar. Far from equilibrium vapour phase growth of lattice matched III-V compound

semiconductor interfaces: some basic concepts and Monte-Carlo computer simulations. Surface

Science, 132:344–374, 1983.

[7] T. Shitara, D. D. Vvedensky, M. R. Willby, J. Zhang, J. H. Neave, and B. A. Joyce. Morpho-

logical model of reflection high-energy electron-diffraction intensity oscillations during epitaxial

growth on GaAs(001). Applied Physics Letters, 60(12):1504–1506, 23 March 1992.

[8] Abraham Silberschatz and Peter Baer Galvin. Operating System Concepts. Addison-Wesley,

fifth edition, 1998.

[9] Jeffrey Y. Tsao. Materials Fundamentals of Molecular Beam Epitaxy. Academic Press, Inc.,

1993.

10

Figure 5: Surface recovery of a statistically roughened surface at 1100 K, 1200 K, and 1300 K.

Colors cannot be directly compared between snapshots.

11

Figure 6: Snapshots of a surface with θ = 1/2 annealed at 250 K, 500 K, 1000 K, 2000 K, and

2500 K. Plotted is the free energy of a single layer surface as a function of surface coverage for the

temperatures simulated.

12

