AIGaN/GaN HEMTs and HBTs

Umesh K. Mishra

PART I

AIGaN/GaN HEMTs

UCSB Materials Properties Comparison

Material	μ	3	Eg	BFOM Ratio	JFM Ratio	Tmax
Si	1300	11.4	1.1	1.0	1.0	300 C
GaAs	5000	13.1	1.4	9.6	3.5	300 C
SiC	260	9.7	2.9	3.1	60	600 C
GaN	1500	9.5	3.4	24.6	80	700 C

BFOM = Baliga's figure of merit for power transistor performance $[K^*\mu^*Ec^3]$

JFM = Johnson's figure of merit for power transistor performance

(Breakdown, electron velocity product) [Eb*Vbr/ 2π]

Need	Enabling Feature P	erformance Advantage	
High Power/Unit Width	Wide Bandgap, High Field	Compact, Ease of Matching	
High Voltage Operation	High Breakdown Field	Eliminate/Reduce Step Down	
High Linearity	HEMT Topology	Optimum Band Allocation	
High Frequency	High Electron Velocity	Bandwidth, μ -Wave/mm-Wave	
High Efficiency	High Operating Voltage	Power Saving, Reduced Cooling	
Low Noise	High gain, high velocity	High dynamic range receivers	
High Temperature Operation	Wide Bandgap	Rugged, Reliable, Reduced Cooling	
Thermal Management	SiC Substrate	High power devices with reduced cooling needs	
-			
Technology	Direct Bandgap:	Driving Force for Technology:	
Leverage	Enabler for Lighting	Low Cost	

UCSB DC Device Level Issues (HEMTs)

$\mathrm{CSB}_{\mathrm{Issues}}$ With Mazimizing AI Mole Fraction in $\mathrm{AI}_{\mathrm{x}}\mathrm{Ga}_{\mathrm{1-x}}\mathrm{N}$

 $x_{AI} = 0.4$

250 nm

DISLOCATIONS LEAD TO PREMATURE RELAXATION OF AIGAN AND A POTENTIAL RELIABILITY PROBLEM BECAUSE OF THE METALLIZED PITS

UCSB Issues With Increasing Mobility

INCREASING AI MOLE FRACTION DECREASES MOBILITY

Mobility v. Al Fraction Plot

UCSB Minimizing Gate Length Extension

ELECTRONS IN SURFACE STATES AND/OR BUFFER TRAPS DEPLETE THE CHANNEL CAUSING GATE LENGTH EXTENSION

SEVERE CONSEQUENCE: DISPERSION BETWEEN SMALL SIGNAL AND LARGE SIGNAL BEHAVIOR BECAUSE OF THE LARGE TRAP TIME CONSTANTS

 $V_{ds}(V)$

WHY DO THESE TRAPS ARISE?

UCSB Example of Advantage of WBG Devices

Amplifier Module

- 10-x power density (> 10 W/mm)
- 10-x reduction in power-combining
- Improved efficiency (> 60 %)
- Improved reliability
- Compact size
- Superior Performance at reduced cost

Equivalent High Power GaN Amplifier Module

UCSB Application Space

UCSB Schematic of Device Structure

UCSB Ball and Stick Diagram of the GaN Crystal

UCSB Polarization World

UCSB How does the electron gas form in AlGaN/GaN structures? - A

 Q_{π} includes the contribution of spontaneous and piezo-electric contributions

UCSB How does the electron gas form in AlGaN/GaN structures? - B

 Q_{π} includes the contribution of spontaneous and piezo-electric contributions

UCSB How does the electron gas form in AlGaN/GaN structures? - C

UCSB How does the electron gas form in AlGaN/GaN structures? - D

UCSB Dispersion in AlGaN/Ga HEMTs

UCSB

UCSB Performance of Passivated AlGaN/GaN HEMT on Sapphire

Performance of AlGaN/GaN HEMT on SiC (CLC)

UCSB Drain Bias Dependence of Rf Power (CLC)

UCSB Flip-chip AlGaN/GaN HEMT for Thermal Management

UCSB I-V Curves from 8mm-wide HEMT

V_{ds} (V/divsion)

UCSB Low Flip-chip Wide Bandwidth Amplifier

UCSB Pulse Power Performance of mm-flipped Device

UCSB Power Performance vs. Year

Part II

High Voltage Operation (> 330 V) of AlGaN/GaN HBTs

UCSB Bipolar transistor key issues

Collection

 $-C_{bc} \Rightarrow 0$ Output Conductance $-v \Rightarrow v_{sat} [2 \ge 10^7 \text{ cm/s}] (Kolnik et. al.)$ $-\Delta I_C / \Delta V_{CE} \Rightarrow 0$ $-V_{br} \Rightarrow E_{crit} W_C [E_{crit} \sim 2 \text{ MV/cm}] (Bhapkar and Shur.)$ $(\Delta W_B / \Delta V_{CE} \Rightarrow 0)$

UCSB Hurdles with GaN bipolar transistors

- Lack of low damage etch to reveal base
 - Leaky E/B junction
 - Bad base contact
 - No etch stop
- High R_B

• Hard to control junction placement in MOCVD due to memory effect of pdopant Mg

UCSB Demonstration of dislocation enhanced leakage

LEO used to investigate leakage of devices without dislocations. (Lee McCarthy et al.)

Leakage from Collector to Emitter, Wing vs Window

Results: LEO device demonstrated Reduction in Leakage Stable operation past 20V Gain unchanged Devices on dislocated material also functional

window region

Gain (τ_e) not currently limited by dislocation density epartment of Defense

UCSB Strategy: Thick Collector

- Decent dislocation density
 - High quality MOCVD templates achieved

Dislocation density ~ 5e8 cm⁻²

- Low background doping
 - $N_D < 1e16~cm^{-3}$ (Assuming uniform doping N_D and $E_{critical} = 2$ MV/cm, requires 10 μm to achieve 1 KV breakdown voltage.)

UCSB Emitter Regrowth Process Flow

- Selectively grow MOCVD emitter on base-collector structures.
 - 1. Pattern regrowth mask
 - 2. Regrow emitter layer by MOCVD
 - 3. Remove mask and contact base and etch to collector
 - 4. Contact collector, emitter

UCSB SIMS: Mg by MOCVD

Severe memory effect observed in non-interrupted MOCVD growth Slow decay tail into GaN:Si regrown on as-grown GaN:Mg layer

Memory effect

Slow decay tail in regrowth

UCSB SIMS: regrowth with surface treatment

- Regrown in Mg-free reactor and all grown by MOCVD
- Presence of an excessive amount of Mg on the surface, which can be removed by acid etch
- Occurrence of Mg diffusion, ~ 40 nm/decade sharpness achieved

$UCSB \ {\rm Selectively \ regrown \ n/p \ diodes}$

- Mask enhanced growth complicates the analysis
 - Regrowth rate depends on the mask layout, diode size etc
 - "Bunny ear" regrowth profile is often seen
 - Only the emitter edge is active in device operation due to highly resistive base layer
 - The junction quality depends on how the regrowth is initiated, e.g. Temp, P, flows, presence of Si and Al etc.

"Bunny ear" regrowth profile of two different square diodes

UCSB

UCSB Regrown n/p Diodes Characteristics

• Comparison of various structures regrown on 0.5 μm GaN: Mg

Run	Layer structure	Growth Parameter		
#		G.R. (nm/min)	Temp/Press (C/Torr)	10^2
0005 10GF	400 nm GaN:Si (4e18 cm ⁻³)	~30	1140/760	
0007 14AE	250 nm Al _{o.o6} GaN:Si (1e18)	~30	1100/300	$\begin{array}{c c} 10^{\circ} & 000510 \text{GF} & \text{Year 2000} \\ \hline & & 000714 \text{AF} \end{array}$
0007 14AF	x _{AI} ~ 5% 250 nm AlGaN:Si (1e18) 75 nm GaN->AlGaN:Si (1e18)	~ 30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0105 13GC	<u>450 nm GaN:Si (1e18)</u> 30 nm GaN	~40	1100/300	$\int_{-\infty}^{\infty} 1x10^{-5} \int_{-\infty}^{0} 1^{1/4} x^{1/4} x^{1$
0105 17AA	$x_{AI} \sim 5\%$ 30 nm GaN:Si 30 nm AlGaN->GaN:Si 730 nm AlGaN:Si 60 nm GaN > AlGaN 60 nm GaN	~60	1100/300	10 ^{°°} 1 -20 -15 -10 -5 0 5 V (Volts)

UCSB HBT with 8 mm GaN collector

- Current gain (β) > 20
- Common emitter operation > 300 V
- Non-passivated
- Base thickness 1000 Å

VERT/DIN

CURSOR (/:/vgrad.)

HORIZ/DIV

CURSOR (/'intercept)

100HA

50 U

UCSB Device structure

- Utilization of uid GaN spacer and grading layer
 HBTs with high emitter injection coefficiency
- Etch damage and current mask layout limits V_{br}

 $\frac{4 \text{ nm GaN:Si (1e18 cm}^{-3}) \text{ contact}}{4 \text{ nm Al}_{0.05} \text{ GaN->GaN:Si (1e18 cm}^{-3}) \text{ grading}}{105 \text{ nm Al}_{0.05} \text{ GaN:Si (1e18 cm}^{-3}) \text{ emitter}}{8 \text{ nm GaN->Al}_{0.05} \text{ GaN (?3e18 cm}^{-3}) \text{ grading}}{8 \text{ nm uid GaN spacer}}{100 \text{ nm GaN:Mg (2e19 cm}^{-3}) \text{ base}}$ $8 \mu \text{m uid GaN (4e15 cm}^{-3}) \text{ collector}}$ $2 \mu \text{m GaN:Si (1e18 cm}^{-3}) \text{ subcollector}}$

Sapphire

UCSB I-V Characteristics

- Conclusion
 - In selective emitter regrowth, a sharp Mg profile, ~ 40 nm/decade, enables the precise junction placement
 - Improvement of regrown-emitter/base diodes
 - Demonstration of high Vbr (> 300 V) with high β (DC common emitter operation up to 35)