GaN HEMTs and Amps

Device Structure

- Gated region
- Un-gated region
- Schottky
- Ohmic
- 2-DEG
- Nucleation
- S.I. GaN
- Substrate
- AlGaN
GaN-Based HEMTs and Amps

Polarization Effect

1. **Strictly no bulk & surface donors**
 - ΔE_C
 - ϕ_{sk}
 - E_F
 - E_s
 - AlGaN
 - GaN

2. **Gate region**
 - ΔE_C
 - E_F
 - E_s
 - AlGaN
 - GaN

3. **With surface trap/donors**
 - ΔE_C
 - E_F
 - E_s
 - AlGaN
 - GaN

4. **With Si-doping in the AlGaN**
 - ΔE_C
 - E_F
 - E_s
 - AlGaN
 - GaN

Adding gate metal
GaN-Based HEMTs and Amps

Benefit of higher Al content

- Higher ΔE_C
 higher charge, lower on resistance
- Higher Shottky gate barrier
 resistance to high temperature
- Higher bandgap in the AlGaN
 increased breakdown field
Dispersion---trapping effect

GaN-Based HEMTs and Amps

Reduced dispersion