Oxide Aperture Heterojunction Bipolar Transistors

James G. Champlain

Ph.D. Defense
University of California, Santa Barbara

February 22, 2002
Acknowledgements

Advisor Umesh Mishra

Committee Art Gossard, Evelyn Hu, and Jim Speck

Mishra Group (old and new)
Ale, Ariel, Can, Dan, Dario, DJ, Gia, Haijiang, Huili, Ilan, Jae, Jason, Jeff, Lee, Likun, Mary, Naiqain, Nguyen, Peter, Prashant, Primit, Rama, Rob C., Rob U., Sten, Tim, Yifeng, and Yingda
Yee Kwang for all the discussions on HBTs and his excellent simulations

York Group
Amit, Angelos, Baki, Bruce, Chris, Hongtao, Jim, Joe, Justine, Nadia, Nick, Paolo, Pengcheng, Pete, Troy, and Vicki

MBE
John English

System B Eric, Prashant, Richard, Sheila, Borys, Can, Dave, and Max

Friends
Todd, Dave, and John
Nick, Omer, Cathy, Fay, Rex, Fereshteh, Neil, Heather, and Stefanie
Overview

Introduction

Transistor Design and Growth
 • Growth as related to bipolar transistors
 • Growth of GaAs_{0.49}Sb_{0.51}, AlAs_{0.56}Sb_{0.44}, and Al_{x}Ga_{1-x}As_{y}Sb_{1-y}
 • n-type doping of arsenide-antimonides

Oxide Aperture Diodes
 • Current density: area versus perimeter
 • Aperture placement
 • Diode Selection Rules

Oxide Aperture HBTs
 • Generation Ø
 • Generation I
 • Generation II
 • RF results

Conclusions and Future Work
The ever-growing demand in communication and radar technology for increased bit-rates and frequency resolution requires systems capable of providing increased bandwidth and clock rates.

Given that these systems are built from circuits, which in turn are built from basic devices and passive elements...

Requires increased bandwidth from the devices, which are the building block of the system.

As complexity increases, the max operating frequency decreases.

A given system frequency, a higher device operating frequency is required.
The current-gain cutoff frequency

Defined as the frequency at which the short-circuit current \((h_{21}) \) gain goes to unity

\[
f_\tau = \frac{1}{2\pi} \left[\frac{\eta k T}{q I_C} \left(C_{BE} + C_{BC} \right) + \tau_B + \tau_C + (R_E + R_C) C_{BC} \right]
\]

The maximum frequency of oscillation

Defined as the frequency at which the unilateral power gain \((U) \) goes to unity

\[
f_{\text{max}} = \sqrt{\frac{f_\tau}{8\pi R_B C_{BC}}}
\]
The Oxide Aperture HBT

\[f_{\text{max}} = \sqrt{\frac{f_{\tau}}{8\pi R_B C_{BC}}} \]

In order to increase \(f_{\text{max}} \), \(R_B \) and/or \(C_{BC} \) must be reduced.

Techniques such as **increased base doping** and **lateral scaling** can reduce \(R_B \); but an **extrinsic portion** of \(C_{BC} \) still remains, limiting the device’s frequency performance.

Various techniques have addressed the reduction of \(C_{BC} \):
- selective regrowth techniques,
- sidewall contacted bases,
- undercut collectors,
- implanted emitters,
- and the transferred substrate technology.

Oxide Aperture HBT
Overview

Introduction

Transistor Design and Growth

- Growth as related to bipolar transistors
- Growth of GaAs$_{0.49}$Sb$_{0.51}$, AlAs$_{0.56}$Sb$_{0.44}$, and Al$_x$Ga$_{1-x}$As$_y$Sb$_{1-y}$
- n-type doping of arsenide-antimonides

Oxide Aperture Diodes

- Current density: area versus perimeter
- Aperture placement
- Diode Selection Rules

Oxide Aperture HBTs

- Generation Ø
- Generation I
- Generation II
- RF results

Conclusions and Future Work
The majority of high-speed HBTs produced today have been InP emitter-up transistors.

AllInAs does not readily oxidize and cannot be easily used to form an oxide aperture.

\[R_{ox,\text{AllInAs}} = 2.4 \, \mu \text{m/hr} \, @ \, 520 \, ^\circ\text{C} \]
Transistor Design: Materials

![Graph showing bandgap energy and lattice constant for various materials.](image)
Transistor Design: Materials

Oxide Aperture HBT

- n^- InGaAs collector
- p^+ GaAsSb base
- n grade from AlAsSb To GaAsSb
- n^+ AlAsSb emitter
- n^+ grade from GaAsSb To AlAsSb
- n^+ GaAsSb sub-emitter

\[R_{ox,AlAsSb} = 5 \text{ \(\mu\)m/hr @ 350 °C} \]
Growth of GaAsSb/AlAsSb

Two methods to grow GaAsSb/AlAsSb

Digital Alloy of III-As/III-Sb

Pros: Highly reproducible
Cons: Heavy wear & tear

Analog Alloy

Pros: Greatly reduced wear & tear
Cons: Requires growth calibrations, maintenance

Growth of Al\textsubscript{x}Ga\textsubscript{1-x}As\textsubscript{y}Sb\textsubscript{1-y}

A fully digital growth (III-As/III-Sb) is undesirable due to the wear & tear

A fully analog growth is practically impossible, requiring cals for each composition

Therefore, a digital alloy of the analog alloys GaAsSb/AlAsSb is used to form the grades between GaAsSb and AlAsSb
n-type Doping of Antimonides

Silicon is the most widely used n-type dopant in III-V semiconductors.

As a result of being a group IV element, it is also amphoteric by nature.

For most III-V semiconductors, Si resides on the group III site as a donor. Conversely, in Sb-based semiconductors, Si incorporates as an acceptor.

Therefore, a group VI element, tellurium, is used as an n-type dopant for Sb-based compounds.

One drawback encountered with doping of the Sb-based semiconductors is the poor mobility of electrons, especially at higher doping levels.
Overview

Introduction

Transistor Design and Growth

• Growth as related to bipolar transistors
• Growth of GaAs$_{0.49}$Sb$_{0.51}$, AlAs$_{0.56}$Sb$_{0.44}$, and Al$_x$Ga$_{1-x}$As$_y$Sb$_{1-y}$
• n-type doping of arsenide-antimonides

Oxide Aperture Diodes

• Current density: area versus perimeter
• Aperture placement
• Diode Selection Rules

Oxide Aperture HBTs

• Generation Ø
• Generation I
• Generation II
• RF results

Conclusions and Future Work
For every transistor, there are two diodes...

All bipolar transistors are constructed from 2 pn diodes

Under forward-active operation, the base-emitter junction acts as a source of carriers and the base-collector junction acts as a sink

Therefore, much of the transistor’s current and current-related characteristics can be related back to the base-emitter junction

Oxides formed from the wet oxidation of Al-based semiconductors have been shown to have fairly high interface recombination velocities
Oxide aperture diodes were fabricated to understand the potential effect of the oxide aperture on the current-voltage characteristics of the BE junction of the HBT.

Layer Structure

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Å</td>
<td>n grade from AlAsSb To GaAsSb</td>
</tr>
<tr>
<td>500 Å</td>
<td>n+ AlAsSb emitter</td>
</tr>
<tr>
<td>1000 Å</td>
<td>n+ grade from GaAsSb To AlAsSb</td>
</tr>
<tr>
<td></td>
<td>n+ GaAsSb sub-emitter</td>
</tr>
</tbody>
</table>

Three thickness of BE grade were examined: 100 Å, 500 Å, 1000 Å.
In addition to the ideality factor (η), the **geometric dependence** of the current provides information on the nature of current conduction within a pn junction.

In actual diodes, the **total current** can be written as a sum of an **area dependent** and **perimeter dependent** current:

$$I_{\text{measured}} = J \cdot A_j + K \cdot P_j$$

For a given bias with P_j/A_j as the independent variable, J corresponds to the **y-intercept** and K to the **slope** of the equation:

$$J = J_S \left(e^{V/\eta V_T} - 1 \right)$$

$$K = K_S \left(e^{V/\eta V_T} - 1 \right)$$

Current Density: A versus P

Ideality Factor

Perimeter

Area
Oxide Aperture Diodes: Results

<table>
<thead>
<tr>
<th>t_{BE}</th>
<th>Dominant geometry</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>unoxidized</td>
<td>Mesa area</td>
<td>~1</td>
</tr>
<tr>
<td>100 Å</td>
<td>Aperture perimeter</td>
<td>1.88</td>
</tr>
<tr>
<td>500 Å</td>
<td>Aperture area</td>
<td>1.01</td>
</tr>
<tr>
<td>1000 Å</td>
<td>Between mesa & aperture area</td>
<td>1.36</td>
</tr>
</tbody>
</table>

- $t_{BE} = 100$ Å
- $t_{BE} = 500$ Å
- $t_{BE} = 1000$ Å

- Depletion region
- Aperture perimeter
- Aperture area
- > aperture area

Base-Emitter Grade Thickness, t_{BE} (Å)

Ideality Factor, η

$\eta_{\text{unoxidized}} = 1$
Simulations performed using **ATLAS simulation software** generally agree with the experimental results.

- $t_{BE} = 100 \text{ Å}$
- $t_{BE} = 500 \text{ Å}$
- $t_{BE} = 1000 \text{ Å}$

Simulations performed **without** interface recombination.
Oxide Diodes: Selection Rules

“The Three Bears”

(1) The oxide aperture must effectively channel carriers injected from the emitter into the base

(2) The current-voltage characteristic should scale with aperture area

(3) The ideality factor (η) should be as close to ideal ($\eta \rightarrow 1$) as possible

“The Three Bears”: one’s too short, one’s too long, and one’s just right
Introduction

Transistor Design and Growth

- Growth as related to bipolar transistors
- Growth of GaAs$_{0.49}$Sb$_{0.51}$, AlAs$_{0.56}$Sb$_{0.44}$, and Al$_x$Ga$_{1-x}$As$_y$Sb$_{1-y}$
- n-type doping of arsenide-antimonides

Oxide Aperture Diodes

- Current density: area versus perimeter
- Aperture placement
- Diode Selection Rules

Oxide Aperture HBTs

- Generation Ø
- Generation I
- Generation II
- RF results

Conclusions and Future Work
Three generations of oxide aperture HBTs were fabricated:

Generation Ø: The first generation of oxide aperture HBTs, fabricated before the oxide aperture diode study

Generation I: The first generation of HBTs to show true transistor action, fabricated after the oxide aperture diode study

Generation II: The first generation of oxide aperture HBTs to produce high-frequency results

![Layer Structure and Band Diagram](image)
Oxide Aperture HBT: Fabrication

1. Deposit dummy collector
2. Etch base mesa
3. Oxidize emitter aperture
4. Etch collector mesa
5. Deposit B/E contacts
6. Etch emitter mesa
7. Deposit AC lines
8. Planarize and deposit posts
9. Deposit interconnects
Oxide Aperture HBT: Fabrication

- Close-up of HBT
 - Collector
 - Emitter
 - Base

HBT cell

HBT
Oxide HBTs: Generation Ø

Key Differences of Gen Ø HBT

- InGaAs base
- Abrupt BE junction
- 2000 Å collector

\[\beta \text{ on the order of } 10^{-6} \sim 10^{-5} \]
\[\eta \approx 1.7 \]

- Non-existent \(I_C \), low \(\beta \), and high \(\eta \) all suggest that the characteristic is recombination dominated

- Results prompted the oxide diode study
Oxide HBTs: Generation I

Key Differences of Gen I HBT

- Lower doping in base and emitter
- 2000 Å collector

Fabricated from same material as the oxide diodes
Definitions

\(V_{\text{offset}} : V_{CE} \) at which \(I_C = 0 \)

\(V_{knee} : V_{CE} \) at which the device switches between forward-saturation and forward-active operation \((V_{BC} \approx 0)\)

Modified Ebers-Moll Model

\[
V_{\text{offset}} \approx \eta_{bc} \frac{kT}{q} \ln \left(\frac{I_{bc,\text{sat}}}{\alpha_F I_{be,\text{sat}}} \right) + \left(1 - \frac{\eta_{bc}}{\eta_{be}} \right) (V_{BE} - I_B R_B) + \frac{\eta_{bc}}{\eta_{be}} I_B R_B
\]

\[
V_{knee} \approx \eta_{bc} \frac{kT}{q} \ln \left[\frac{I_E - \alpha_R I_C}{I_{be,\text{sat}} (1 - \alpha_F \alpha_R)} \right] - \eta_{bc} \frac{kT}{q} \ln \left[\frac{\alpha_F I_E - I_C}{I_{bc,\text{sat}} (1 - \alpha_F \alpha_R)} \right] + I_E R_E + I_C R_C
\]
The Knee Voltage: V_{knee}

$$V_{knee} \approx \eta_{be} kT \ln \left[\frac{I_E - \alpha_R I_C}{I_{be,\text{sat}} (1 - \alpha_F \alpha_R)} \right] - \eta_{bc} kT \ln \left[\frac{\alpha_F I_E - I_C}{I_{bc,\text{sat}} (1 - \alpha_F \alpha_R)} \right] + I_R R_E + I_C R_C$$

Model

Increasing R_E

Measured

$I_R = 0 - 90 \, \mu A$
$I_{R,\text{step}} = 10 \, \mu A$
The emitter resistance (R_E) of a bipolar transistor can be measured by floating-collector measurements.

At a current level of ~4 mA with $R_E \approx 85 \, \Omega \rightarrow V_{knee} \geq 0.34 \, \text{V}$
What have we learned so far…

Generation Ø and oxide diodes
Oxide aperture placement is critical

“The Three Bears”: can’t be **too close**, can’t be **too far**, has to be **just right**

Generation I
Resistance in the emitter due to the **low electron mobility** in $\text{AlAs}_{0.56}\text{Sb}_{0.44}$ is a problem (high V_{knee})

Generation II

- Oxide aperture is located 500 Å from the pn junction (same as Gen I)
- Increased doping in the emitter and base
- Increased collector width to 3000 Å
Generation II: Gummel and CE

1 x 10 HBT

- $A_E = 0.5 \times 9.5 \, \mu m^2$
- $A_C = 1 \times 10 \, \mu m^2$

2 x 10 HBT

- $A_E = 1.5 \times 9.5 \, \mu m^2$
- $A_C = 2 \times 10 \, \mu m^2$

4 x 10 HBT

- $A_E = 3.5 \times 9.5 \, \mu m^2$
- $A_C = 4 \times 10 \, \mu m^2$

Gummel Plot

- $\eta \approx 1$
- $\eta \approx 1.18$
- $\beta \approx 2.6$

CE Plot

- $\eta \approx 1$
- $\eta \approx 1.18$
- $\beta \approx 11$
Emitter resistance (R_E) has reduced as a direct result of increased doping.

R_E increases linearly with $1 / A_E$

- Suggests internal resistance ($R_{E,int}$) dominates of lateral access resistance ($R_{E,acc}$)
Generation II: Gain Variation

The reduced gain with decreasing emitter/collector area is most probably a result of lateral diffusion of carriers.

Simulations

1 x 10

2 x 10

4 x 10
The output conductance \(g_o \) of the oxide aperture HBT is much higher than expected.

The common-emitter breakdown voltage \(V_{bkd} \) is lower than expected.

Impact Ionization
In conventional HBTs, the active collector area is larger than the active emitter area.

In oxide aperture HBTs, the active collector area and emitter area are roughly the same size.
$A_C = 4 \times 10 \, \mu m^2$ and $A_E = 3.5 \times 10 \, \mu m^2$ for all HBTs

$I_B = 0 \sim 0.5 \, mA$ at 50 μA steps.
Scattering parameter (S-parameter) measurements were performed on the Generation II HBTs in order to evaluate the transistor's frequency performance.

From S-parameters, characteristics like the short-circuit current gain (h_{21}) and unilateral power gain (U) can be extracted.

Subsequently, the current-gain cutoff frequency (f_τ) and maximum frequency of oscillation (f_{max}) can be determined.

$f_\tau \approx 8.3$ GHz

$f_{\text{max}} \approx 17.76$ GHz
Measured f_τ and f_{max}

The measured values of f_τ and f_{max} for the oxide aperture HBTs were lower than expected.

Maximum measured f_{max}

$$f_{\text{max}} = 17.76 \text{ GHz} \quad f_\tau = 8.3 \text{ GHz}$$

for a 2 x 10 HBT ($I_c \approx 9$ mA, $V_{CE} = 2$ V)

Calculated f_τ and f_{max}

Calculations using the measured R_E, R_B, and assuming a fully depleted collector suggest:

$$f_\tau \approx 25 \text{ GHz} \quad f_{\text{max}} \approx 35 \text{ GHz}$$

f_τ and f_{max} were calculated using the classical hybrid-π model for a bipolar transistor:

$$f_\tau = \frac{1}{2\pi} \left[\frac{\eta V_T}{I_C} \left(C_{BE} + C_{BC} \right) + \tau_B + \tau_C + \left(R_E + R_C \right) C_{BC} \right]^{-1}$$

$$f_{\text{max}} = \sqrt{\frac{f_\tau}{8\pi R_B C_{BC}}}$$
Re-examining the oxide aperture HBT structure suggests the presence of a **parasitic capacitance** in the base-emitter resulting from the **collector-up design**.

Modified model

By using MoTC, the **parasitic capacitance** leads to an **additional delay time** within f_{τ}

$$f_{\tau,x} = \frac{1}{2\pi} \left[\tau_{\tau,\text{std}} + \left(\frac{\eta V_T}{I_C} + \frac{R_B}{\beta_o} + R_E \right) C_x \right]^{-1}$$

$$\tau_{\tau,\text{std}} = \frac{1}{2\pi f_{\tau,\text{std}}}$$

$$f_{\text{max},x} = \sqrt{\frac{f_{\tau,\text{std}}}{8\pi R_B C_{BC}}} = \sqrt{\frac{f_{\tau,x}}{8\pi R_B C_{BC}}}$$
f_τ Scaling

In a transistor where $A_C \approx A_E$, f_τ should be essentially independent of emitter size

$$f_\tau = \frac{1}{2\pi} \left[\frac{\eta V_T}{J_C} (c_{BE} + c_{BC}) + \tau_B + \tau_C + (r_E + r_C) c_{BC} \right]^{-1}$$

In the oxide aperture HBT, this is not true

$$f_{\tau,x} = \frac{1}{2\pi} \left[\tau_{\tau,\text{std}} + \left(\frac{\eta V_T}{I_C} + \frac{R_B}{\beta_o} + R_E \right) C_x \right]^{-1}$$

By applying the above equation, $f_{\tau,\text{std}} = 1/2\pi \tau_{\tau,\text{std}} \approx 26.3 \text{ GHz}$ and $C_x \approx 345 \text{ fF}$
Circuit designers require device models in order to design accurately and model circuits. Device models are useful to device engineers because they can lend insight into the operation of the device, in addition to verifying proposed phenomenon.

Model Extraction

Proper high-frequency model extraction requires:

1. A well-behaved, stable device
2. Y-parameters that accurately represent the device

Y-parameters that accurately represent the transistor require prior knowledge of the model.
Using measured characteristics \((R_B, R_E, \beta_o, g_m)\) and initial estimates of other characteristics \((r_{BC}, C_{BC}, C_x)\) a simple model was generated.
A model which includes the lateral emitter access resistance \(R_{E,acc} \) results in a slightly more accurate model.
Removal of the parasitic capacitance radically affects the S-parameters, resulting in a marked increase in f_τ with a minimal perturbation in f_{\max}.

![Diagram showing changes in S-parameters](image)
Introduction

Transistor Design and Growth

- Growth as related to bipolar transistors
- Growth of GaAs$_{0.49}$Sb$_{0.51}$, AlAs$_{0.56}$Sb$_{0.44}$, and Al$_x$Ga$_{1-x}$As$_y$Sb$_{1-y}$
- n-type doping of arsenide-antimonides

Oxide Aperture Diodes

- Current density: area versus perimeter
- Aperture placement
- Diode Selection Rules

Oxide Aperture HBTs

- Generation Ø
- Generation I
- Generation II
- RF results

Conclusions and Future Work
Conclusions

The validity and application of the oxide aperture HBT design for high maximum frequency of oscillation (f_{max}) was examined.

The work culminated with the fabrication of an oxide aperture HBT with an f_τ on the order of $8 \sim 10$ GHz and f_{max} of $12 \sim 17$ GHz, with the maximum measured f_{max} being 17.76 GHz.

Two critical aspects concerning the design and fabrication of the oxide aperture HBT became apparent:

1. The impact of the oxide aperture on the DC operation of the BE junction and thereby the HBT "The Three Bears"

2. The effect of the parasitic BE capacitance on the high-frequency performance of the HBT

$$f_{\tau,x} = \frac{1}{2\pi} \left[\tau_{\text{std}} + \left(\frac{\eta V_T}{I_C} + \frac{R_B}{\beta_o} + R_E \right) C_x \right]^{-1}$$
Future Work

The research presented here represents a foundation

Suggested areas of research:

sub-micron scaling
for reduced base-collector capacitance and increased f_{max}

bandgap graded base layers
for reduced base transit times and increased f_{τ}

Specific areas that **must** be examined in future research:

1. **collector design**
 for reduced output conductance and increased common-emitter breakdown

2. **base-emitter junction optimization**
 for reduced emitter resistance and improved performance

3. **self-limiting oxidation**
 for sub-micron scaling and reduced parasitic base-emitter capacitance
Future Work

Collector Design

The high output conductance in the devices in this work were attributed to **impact ionization** in the InGaAs collector.

A simple solution is to use an InP collector.

Experiments by other groups have shown devices fabricated with this BC combination have increased output resistances and breakdown voltages.

Base-Emitter Junction Design

The BE junction in this work is not the optimum design.

High R_E due to low mobility AlAsSb in the emitter.

Alternatives:

- **InP-based emitter**
 - Alternative oxide source material: AlInAs
Future Work

self-limiting oxidation

The only means to control oxidation depth currently is **time and temperature**

As a result, the oxide depth is **equidistant** from the outside edge of the oxidation mesa

This required the base mesa to be **similar to and centered on** the collector mesa

Possible Solutions

Stress/Strain Engineering:

By inducing strain selectively under the collector, it may be possible to alter the oxidation conditions

Selective Disordering:

By generating disorder only outside of the collector, it may be possible to increase the oxidation outside of the collector